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Characterization of the Feedstock Properties of Metal Injection-molded 
WC-Co with Palm Stearin Binder System

(Pencirian Bahan Suapan bagi Pengacuanan Suntikan WC-Co dengan Sistem Bahan Pengikat Stearin Sawit)
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ABSTRACT

Feedstock preparation, as well as its characterization, is crucial in the production of highly sintered parts with minimal 
defect. The hard metal powder - particularly, cemented carbide (WC-Co) used in this study was investigated both physically 
and thermally to determine its properties before the mixing and injection molding stage. Several analyses were conducted, 
such as scanning electron microscopy, energy dispersive X-ray diffraction, pycnometer density, critical powder volume 
percentage (CPVP), as well as thermal tests, such as thermogravimetric analysis and differential scanning calorimetry. 
On the basis of the CPVP value, the feedstock, consisting of WC-Co powder, was mixed with 60% palm stearin and 40% 
polyethylene at an optimal powder loading, within 2 to 5% lower than the CPVP value. The CPVP spotted value was 65%. 
The feedstock optimal value at 61% showed good rheological properties (pseudoplastic behavior) with an n value lower 
than 1, considerably low activation energy and high moldability index. These preliminary properties of the feedstock serve 
as a benchmark in designing the schedule for the next whole steps (i.e. injection, debinding and sintering processes). 
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ABSTRAK

Penyediaan bahan suapan berserta dengan penciriannya adalah sangat penting dalam menghasilkan jasad sinter 
berketumpatan tinggi dengan kecacatan yang minimum. Serbuk logam keras, iaitu karbida terekat (WC-Co) yang 
digunakan dalam kajian ini diuji secara fizikal dan terma untuk mengkaji sifatnya sebelum proses percampuran dan 
pengacuanan suntikan dilakukan. Beberapa ujian telah dilakukan, antaranya mikroskopi elektron imbasan (SEM), 
serakan tenaga sinar-X (EDX), ketumpatan piknometer, jumlah peratusan serbuk kritikal (CPVP) manakala secara terma 
adalah analisis permeteran graviti haba (TGA) dan permeteran kalori pengimbasan kebezaan (DSC). Berdasarkan nilai 
CPVP yang diperoleh, iaitu 65%, didapati bagi bahan suapan yang mengandungi serbuk WC-Co yang dicampur bersama 
bahan pengikat stearin sawit sebanyak 60% dan polietilena sebanyak 40%, beban serbuk yang optimal berada 2-5% di 
bawah nilai CPVP tersebut. Seterusnya didapati sifat reologi bagi bahan suapan pada beban serbuk yang optimal, iaitu 
61% mempamerkan sifat pseudoplastik, dengan menunjukkan nilai n kurang daripada 1, tenaga pengaktifan aliran 
yang rendah dan indeks pembolehacuanan yang tinggi. Kesemua ciri awal bahan suapan ini akan digunakan sebagai 
penanda aras dalam merangka jadual bagi proses yang berikutnya; iaitu pengacuanan suntikan, penyahikatan dan 
seterusnya pensinteran.

Kata kunci: Pembebanan serbuk genting; pengacuanan suntikan logam; stearin sawit; WC-Co

INTRODUCTION

Feedstock characterization is one of the most crucial steps 
in metal injection molding (MIM) technology because 
the rest of the steps (molding, debinding and sintering) 
depend on the properties of the feedstock. One of the most 
important parameters is the optimal solid loading, which is 
estimated based on the critical powder loading. It is a state 
where all the spaces between particles are filled with binder 
and no void exists. The optimal solid loading is usually kept 
lower by 2 to 5 vol.% than the critical value (German & 
Bose 1997) to ensure process flexibility and to recognize 
powder-binder variations. Critical powder loading is 
important in determining rheological properties and 
interparticle distances. It is affected by the binder system 

and by the following powder characteristics: Mean size 
(fine or coarse), particle size distribution (wide, narrow, 
monomodal or bimodal), and particle shape (spherical or 
irregular) (Contreras et al. 2010). 
	 In addition, the viscosity of MIM feedstock plays a 
very important role in MIM because the particles must be 
allowed to flow into the die cavity. This process requires 
specific rheological characteristics (German & Bose 1997). 
MIM feedstock is often rheologically characterized using 
capillary rheometry, especially at low shear rates. Good 
rheological properties of binders and feedstock are one of 
the keys to produce green parts with uniform density and 
no defects, in addition to obtain successful debinding and 
sintering and high-quality products (Rhee et al. 1998). Palm 
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stearin has been reported as having a good attribute as a 
binder system in MIM (Iriany 2002; Istikamah 2010; Nor 
et al. 2010). Although the role of the binder as a vehicle 
to support the metal powder is only temporary, especially 
during mixing and injection molding, it is very important. 
Its behavior, especially its flow properties during molding, 
is the most important criterion in developing new binder 
systems to ensure that no defect occurs during molding.
The characteristics of the feedstock are crucial because the 
part defects can be controlled in subsequent processing 
steps. The objective of this study was to investigate the 
feedstock characteristics until the stage of the feedstock 
rheological properties. 

EXPERIMENTAL DETAILS

The powders used in the present investigations were 
WC (supplied by Eurotungstene.com) and Co powders 
(supplied by Buffalo Tungsten, Inc.). The elemental WC 
powder and Co powder were milled in ethanol media to 
form the WC-9Co alloy. The procedures and results of 
the wet milling process have been discussed in literature 
(Amin et al. 2012). The elemental distribution nearest 91% 
of WC and 9% of Co was checked using energy dispersive 
spectroscopy (EDS). The microstructure of the ball-milled 
WC-Co powder was observed using scanning electron 
microscopy (JEOL JSM-6380LA). 
	 The binder system used in this investigation comprised 
of palm stearin and polyethylene (PE). The characteristics 
of the binder components were examined using differential 
scanning calorimetry (DSC) and thermogravimetric analysis 
(TGA), based on the ASTM Standard E 473-00. The critical 
powder loading of the WC-Co powder was tested according 
to the modified American Society for Testing and Materials 
Oil Absorption Test, ASTM D-28-31. The rheological 

behavior of the feedstock was examined using a CFT-
500D Shimadzu capillary rheometer, which measures the 
viscosity resistance when melted materials pass through 
an orifice. The test was conducted at a constant powder 
loading of 61%. The capillary temperature was from 130 
to 150°C.

RESULTS AND DISCUSSION

Figure 1 shows the EDS graph of the wet-milled powder. 
The graph shows presence of 86.22% WC and 13.79% Co 
in the alloy powder, indicating that the nearest value was 
the ideal one (WC-91% and Co-9%).
	 The morphology of the milled powder, as shown in 
Figure 2(a), shows a deagglomerated powder with finer 
particle sizes compared with the as-received sample 
(Figure 2(b)). This criterion is favorable because the 
homogenous feedstock of deagglomerated powders 
exhibits low viscosity and high flow stability (Suri et al. 
2003).
	 In the DSC analysis, the peak of the graph corresponded 
to the melting temperature of the binder component. As 
shown in Figure 3(a) and 3(b), the melting point of the Palm 
Stearin binder was originally 61°C, whereas that of PE was 
127°C. The mixing and molding temperatures should be set 
above the melting point of the highest melting component 
of the binder (i.e. PE 127°C) to ensure that all the binders 
will melt and that the mold will be homogenously filled 
with the feedstock. Mold temperature should be kept below 
the melting point of the minor binder (i.e. Palm stearin, 
61°C) to prevent the molded part from sticking into the 
mold cavity.
	 Figure 4(a) and 4(b) shows the TGA curve for 
both Palm Stearin and PE, respectively. Palm Stearin 
decomposed between 398.5 and 598.8°C (Figure 4(a)), 

FIGURE 1. Elemental distribution via EDS after wet milling
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whereas PE decomposed between 389.6 and 501.6°C 
(Figure 4(b)). The molding and mixing temperatures must 
be below the binder decomposition temperature (German 
& Bose 1997) to prevent binder degradation. According 
to the TGA analysis, a wide decomposition range is very 

useful for a fast debinding process and a defect-free product 
(Youseffi & Menzies 1997). The temperature should not be 
raised too quickly to prevent defects, such as bubbles and 
cracks (Luo et al. 2009). The TGA curve was also used to 
design the thermal debinding cycle, whereby all binders 

	 (a)	 (b)

FIGURE 2. Morphology of (a) wet milled powder and (b) as-received powder

(a) Palm stearin binder

(b) Polyethylene (PE) binder

FIGURE 3. Graph of intensity vs temperature showing the melting point of binders

Onset:	 61.42°C

Onset:	 126.84°C
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were removed at above the maximum decomposition 
temperature of the binders. 
	 Figure 5 shows the torque evolution during the testing 
of the critical solid loading for the WC-Co powder, with the 
addition of oleic acid to serve as binder. When the critical 
solid loading was reached, the torque value decreased with 
the addition of powder. The reason for this phenomenon 
is that the excess powder is no longer part of the powder-
binder mixture, which leads to reduced cohesion mixture 
(Contreras et al. 2010). Our calculation showed that the 
critical powder loading in this study was 65%. Thus, 
optimal solid loading was at 60, 61, 62 and 63 (i.e. 2 
to 5% lower than the critical value). This value greatly 
differs from that of others, such as Yunn et al. (2011), 
who obtained 46 vol.% of critical solid loading because 
the powder used in their study was not milled. This result 
is supported by Hezhou et al. (2008), who reported that 

milling enhances the maximum powder loading of the 
feedstock and by Shengjie et al. (2006), who reported that 
critical powder loading is inversely proportional to the size 
of the powder particle. Nano powders have greater surface 
area and are easier to aggregate than micro powders. This 
hypothesis is confirmed by Yang and German (1998), 
who obtained 59 vol.% of critical solid loading for the 
nanophase cemented carbide that they used. 
	 Figure 6 shows the viscosity as a function of shear 
rate for the feedstock at 61% powder loading, shear rate 
at 1000 s-1 and temperatures ranging from 130 to 150°C. 
In general, the feedstock exhibits pseudoplastic behavior, 
whereby the viscosity decreases as the shear rate increases 
(shear thinning). This behavior can be due to the breakage 
of particle agglomerates with the release of the fluid binder 
(German & Bose 1997). Table 1 summarizes the important 
rheological properties of the feedstock: Flow behavior index 

(a) Palm stearin

(b) Polyethylene

FIGURE 4. Decomposition temperature of binders (a) palm stearin and (b) polyethylene

Onset:	398.5°C

Residual mass: 0.32% (598.8°C)

Peak: 389.6°C

Peak: 501.6°C
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n, activation energy E and moldability index α. The flow 
behavior index, n, indicates the degree of shear sensitivity. 
The value of n should be smaller than 1 to represent the 
shear thinning behavior of pseudoplastic materials. A low 
n value indicates that viscosity is more dependent on shear 
rate. The n value of the feedstock at 61% powder loading 
indicates that the feedstock is greatly dependent on the 
shear rate. However, a very low n value is undesirable 
because it can lead to the slip flow phenomenon that can 
cause molding defects. In this case, the feedstock at 145°C 
showed the best properties because it has the highest value 
of n or the lowest sensitivity to shear thinning behavior. 

	 The activation energy E, indicates the degree of 
the dependence of temperature to viscosity. Thus, at 
high values of E, any small fluctuation in temperature 
and pressure during molding results in sudden change 
in viscosity. In contrast, feedstock with less activation 
energy (less sensitivity to temperature) will minimize stress 
concentration, cracks and distortion in the molded part. 
Thus, the feedstock exhibits less sensitivity to temperature 
and is suitable for injection molding. 
	 Barring any problems, such as jetting or high residual 
stresses, high values of α are desirable because the 
feedstock with low α values will be prone to powder-binder 

TABLE 1. Rheology properties of feedstock at shear rate 1000 s-1

Powder loading 
(%vol)

Temperature 
(oC)

Flow behaviour 
index n

Activation energy 
E (kJ/mol)

Apparent viscosity η
(Pa.s)

Moldability index 
α

61 130 0.62 47.3 84.19 792.45
135 0.64 47.3 67.03 942.93
140 0.608 47.3 69.07 996.32
145 0.892 47.3 30.69 617.85
150 0.665 47.3 54.2 1085.13

 FIGURE 5. Torque evolution of WC-Co powder for CPVC test
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FIGURE 6. Viscosity of PIM feedstocks as a function of shear rate at powder loading 61%
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separation. As shown, all the feedstock used showed high 
moldability indices, indicating that minimal compact 
defects will be produced. 

CONCLUSION

The thermal and physical analyses of feedstock have been 
discussed thoroughly in this study. The critical powder 
loading spotted for the WC-Co powder is 65%. Thus, 
the rheological properties of the optimal feedstock with 
powder loading of 61% show good pseudoplastic behavior, 
which is suitable for injected molding. All information will 
serve as benchmarks in designing the subsequent route for 
processing cemented carbide through PIM.
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